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Augmented spaces, two-level methods, and stabilizing subgrids
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SUMMARY

Starting from the already known relationship between stabilized methods, augmented spaces and residual-
free bubbles (RFB), the paper introduces a possible way of mimicking the e�ect of RFB just by con-
structing a suitable subgrid and then solving the standard Galerkin equations on the modi�ed grid.
Concentrating on the model problem of linear convection-dominated equations, we give su�cient con-
ditions on the subgrid that ensure stability, and error bounds of the same type of standard stabilizing
procedures. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: stabilized methods; residual-free bubbles; Stabilizing subgrids; convection-dominated
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1. INTRODUCTION

In recent times, two-level methods are becoming popular in a wide variety of applications.
Sometimes they can be used to take advantage of parallel computers, as in domain decompo-
sition methods (see for instance, the series of proceedings of the yearly conference in domain
decomposition methods, visiting [1]). Other times, they are used in order to take into account
small-scale e�ects, as for instance when dealing with composite materials having a �ne struc-
ture (see References [2–4], and the review [5] with the references therein), or when dealing
with Helmholtz equations at high frequency [6, 7]. They are also used in a posteriori error
analysis (see e.g. References [8–10], and the references therein). Finally, they are often also
used to stabilize �nite element formulations that lack the necessary stability properties, as for
convection-dominated �ows or Stokes problems [11–13]. In many cases, they are not seen as
two-level methods, but, as we shall see, they �t rather easily into this category.
The �rst goal of this paper will indeed be to indicate a general framework that can be seen

as a generalization of the augmented space method, in order to include a wide class of these
tricks, used for dealing with subscales, into a uni�ed approach.
The second, and main goal of the paper, is to show that within this approach one can set

suitable conditions on the subgrids that ensure the optimal performance of the corresponding

∗Correspondence to: F. Brezzi, Istituto di Analisi Numerica del CNR, Universit�a di Pavia, via Ferrata 1, I-27100,
Pavia, Italy.

Contract/grant sponsor: Partially supported by MURST; contract/grant number: COFIN 99

Received May 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised October 2001



32 F. BREZZI AND L. D. MARINI

two-level method. We shall do that in the particular case of advection-dominated scalar equa-
tions, where much is known (see e.g. References [14–17]), so that the quality of the results
can be evaluated in a sharper way. In particular, we shall see that a certain number of sta-
bilized methods can actually be interpreted just as a way of choosing a suitable subgrid,
and then applying the usual Galerkin framework (and computer programs). In other words,
one can stabilize the problem just by choosing the subgrid. This clearly can also be used in
self-adaptive methods.
It would be very interesting to study the possible extensions of this approach to other

problems, including more complicated �uid �ows, or also problems of di�erent applicative
nature.

2. THE MODEL PROBLEM

In order to describe the general idea, we take a simple model problem, or, rather, a class of
them. We assume that � is a polygon in R2, and we set

V :=H 1
0 (�)

We then consider a bilinear form (u; v)→L(u; v) de�ned as

L(u; v) :=
∫
�

2∑
i=1

(
2∑

j=1
aij(x)

@u
@xi

@v
@xj
+ ubi(x)

@v
@xi
+ ci(x)v

@u
@xi

)
+ d(x)uv dx (2)

where clearly x=(x1; x2). The coe�cients aij; bj; ci; d are supposed to be smooth functions of
x in �. This will easily imply the continuity of the bilinear form L on V × V , that is

∃M such that L(u; v)6M‖u‖V‖v‖V ; ∀u; v∈V (3)

To simplify the exposition, we also assume that the bilinear form L is V -elliptic:

∃�¿0 such that L(v; v)¿�‖v‖2V ∀v∈V (4)

For a given right-hand side f, say, in L2(�), we then consider the variational problem

�nd u∈V such that L(u; v)= (f; v) ∀v∈V (5)

where, as usual, (,) stands for the L2(�) inner product. It is clear that, thanks to (4), problem
(5) has a unique solution. In di�erent applications, (5) can represent a convection-dominated
problem, or a problem with a composite material having a �ne structure, or just a nice elliptic
problem where domain decomposition has to be used in order to take advantage of a parallel
computer. The approach that follows, however, can rather easily be extended to systems of
equations, including inde�nite ones that can be found, for instance, in applications to mixed
methods.
In the following sections we shall employ the usual notation for Sobolev norms ‖ · ‖s;� and

seminorms | · |s;� (see e.g. Reference [18]).
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3. THE GENERAL IDEA

The general idea behind the class of methods we have in mind can be roughly described as
follows. We consider a splitting of � in a �nite number of subpolygons �k (k=1; : : : ; K) in
such a way that ⋃

k

��k = �� and �r ∩�s= ∅ for r �= s (6)

In (6) each �k is supposed to be open, and ��k represents its closure. Then we set

� :=
⋃
k
@�k (7)

and we denote by 	 the space of traces on � of the functions of V , that is

	 := {g∈L2(�) such that ∃v∈V; v|� = g} (8)

Then we consider a �nite dimensional subspace

	H ⊂	 with N := dim(	H ) (9)

and the in�nite-dimensional subspace VH of V made by the functions in V whose traces on
� belong to 	H , that is

VH := {v∈V such that v|�∈	H} (10)

We can now consider the approximate problem:

�nd uH ∈VH such that L(uH ; vH )= (f; vH ) ∀vH ∈VH (11)

It is clear from (4) that problem (11) also has a unique solution. In many applications, the
decomposition (6) will be made of triangles, with the usual compatibility conditions (namely,
for all r and s (with r �= s) the intersection ��r ∩ ��s must be either a common vertex or a
common edge or empty). Then, we might choose a �nite element space VP (the subjacent
Polynomial space) and de�ne 	H as the space spanned by the traces of VP on �. In these
cases, the stabilizing e�ects of passing from VP to VH are well known. See for instance
References [16, 17] for the case of advection-dominated problems. In other cases, however,
the structure can be much more complicated. We might for instance have a grid on �,
and take 	H as the set of functions that are continuous on �, vanishing on �∩ @� and
piecewise polynomial on the given grid. Note that, in this case, the �k’s do not need to
be triangles or quadrilaterals, and even if they are we do not need compatibility conditions
among them. In these cases, there will be no obvious starting space VP. In other cases the
space 	H can contain, besides or instead of piecewise polynomials, other functions having
suitable properties (exponentials, trigonometric functions, wavelets, or other problem-�tted
shapes). During an iterative procedure, these functions might be changed from time to time,
using suitable information obtained from the previous steps. As you can see, the framework
is rather general.
In any case, it is possible to identify the subspace (of bubbles) VB which can simply be

de�ned as

VB :=
∏
k
H 1
0 (�k)⊂V ≡H 1

0 (�) (12)
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34 F. BREZZI AND L. D. MARINI

We can then identify another subspace VL made of functions vL in VH such that

L(vL; vB)=0 ∀vB∈VB (13)

If L is the di�erential operator associated with the bilinear form L, the elements of VL are
local solutions of the partial di�erential equation

LvL=0 in �k (14)

for all k, and having traces on � that belong to 	H . It is clear that

VH ≡VL ⊕ VB (15)

In some cases it will also be convenient to identify a third subspace, VL∗ , made of functions
vL∗ in VH such that

L(vB; vL∗)=0 ∀vB∈VB (16)

If L∗ is the formal adjoint of the operator L, the elements of VL∗ are local solutions of the
partial di�erential equation

L∗vL∗ =0 in �k (17)

for all k, also with traces in 	H . It is clear that together with (15) we also have

VH ≡VL∗ ⊕ VB (18)

We also point out that both VL and VL∗ are �nite dimensional, and dim(VL)≡ dim(VL∗)≡ dim
(	H )≡N .
Given the right-hand side f we can �nally consider the particular solution uf

B ∈VB such
that

L(uf
B ; vB)= (f; vB) ∀vB∈VB (19)

In strong form, uf
B will be the solution, in every �k , of the boundary value problem

Luf
B =f in �k uf

B =0 on @�k (20)

We have then the following theorem.

Theorem 1
Let uH be the unique solution of (11), and let uH = uL + uB be its decomposition according
to (15). Then uB coincides with the unique solution uf

B of (19), and uL can be characterized
as the unique solution of either one of the following problems:

�nd uL∈VL such that L(uL; vL) +L(uB; vL)= (f; vL) ∀vL∈VL (21)

or

�nd uL∈VL such that L(uL; vL∗)= (f; vL∗) ∀vL∗ ∈VL∗ (22)
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Proof
It is clear from (4) that both (11) and (21) have a unique solution. Let uH be the solution of
(11) and let uH = uL + uB be its (unique) decomposition according to (15). Using de�nition
(13) and then (11) for vH = vB we have

L(uB; vB)=L(uL; vB) +L(uB; vB)=L(uH ; vB)= (f; vB) ∀vB∈VB (23)

which implies that uB coincides with the unique solution uf
B of (19). Then we can take vH = vL

in (11) and obtain

(f; vL)=L(uH ; vL)=L(uL + uB; vL) ∀vB∈VL (24)

telling us that uL coincides with the unique solution of (21).
We still have to prove that uL can also be characterized as the solution of (22), and that such

solution is unique. Using uH = uL + uf
B and vH = vL∗ in (11), and using (16) we immediately

have that uL solves (22). Let now ũL be another possible solution, in VL, of (22). It is easy to
see that then ũH : = ũL + uf

B veri�es (11) for all vL∗ ∈VL∗ and for all vB∈VB. Using (18) we
have then that ũH veri�es (11) for all vH in VH . As (11) has a unique solution, we conclude
that ũH ≡ uH and then ũL ≡ uL, thanks to (15). Hence the uniqueness of the solution of (22)
is also proved.

In the case where one has a subjacent polynomial space VP, one can present the problem in
another, slightly di�erent way. Indeed, assuming for simplicity that VP ∩VB = ∅, we can now
split VH =VP ⊕ VB, and, accordingly, uH = uP + uBP. Then uBP solves

L(uBP; vB)=−L(uP; vB) + (f; vB) ∀vB∈VB (25)

that can be written, shortly, as

uBP=L−1
B (f − LuP) (26)

This, inserted into

L(uP; vP) +L(uBP; vP)= (f; vP) ∀vP∈VP (27)

gives

L(uP; vP)− (L−1
B uP; L∗vP)= (f; vP)− (L−1

B f; L∗vP) ∀vP∈VP (28)

which could be considered as another equivalent way of writing the same problem (11), or
(21), or (22). Notice that, in particular, we have L−1

B f≡ uf
B as de�ned in (19).

Methods of these types are found at several occurrences in the literature. For instance, for
convection-dominated problems one can see References [14, 19], and the references therein for
methods in formulation (21) or (22), while formulation (28) can be found in Reference [20]
and its equivalence with stabilized methods as SUPG (see References [21–24]) is made clear
in Reference [25]. Formulations of type (21) or (22) can also be found, at a more abstract
level but for one-dimensional problems, in Reference [26] and also, in more recent times, in
References [3, 4] for homogenization problems. In some sense, the upscaling technique of Ref-
erences [27, 29] can also be seen in this framework, although it uses the mixed formulation as
a starting point and hence does not enter directly the present assumptions. See Reference [30]
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for a more general setting that includes the upscaling methods. Apart from one-dimensional
cases (where they all give back the exact solution, provided one solves exactly the di�eren-
tial equation in each subdomain), all these methods require a suitable approximation for the
solutions of the problems inside each subdomain, as we shall see below in more detail. A
similar point of view could also be taken when looking at domain decomposition problems,
where (22) would represent a sort of continuous Schur complement that needs however, one
way or another, to be discretized.
Indeed, if we consider the problem of the actual solution of all these equivalent formula-

tions, several observations are in order. First of all, problem (19) is in�nite dimensional, and
therefore its solution is, in general, out of reach. In some cases, however, one might think
that the knowledge of the traces of uL could provide enough information. However, even if
problem (22) is actually �nite dimensional, it is not solvable in practice. Indeed, in order
to solve it on a computer, we should �rst choose a basis { (i)} (i=1; : : : ; N ) in 	H (this
is not so di�cult) and then associate to it a basis {v( j)L } (j=1; : : : ; N ) in VL and a basis
{v(i)L∗} (i=1; : : : ; N ) in VL∗ , de�ned by

v( j)L =  ( j) on � and Lv( j)L =0 in �k ; (j=1; : : : ; N : k=1; : : : ; K) (29)

and, respectively,

v(i)L∗ =  (i) on � and L∗v(i)L∗ =0 in �k ; (i=1; : : : ; N : k=1; : : : ; K) (30)

Then, we can express uL, as uL=
∑

j Ujv
( j)
L and reduce (22) to the linear system of equations

N∑
j=1

UjL(v
( j)
L ; v(i)L∗)= (f; v(i)L∗) ∀i=1; : : : ; N (31)

However, in order to compute the coe�cients L(v( j)L ; v(i)L∗) of the matrix in (31), we need
to know the values of the v( j)L and v(i)L∗ inside each �k , that requires the solutions of the
boundary value problems (29) and (30); and this cannot be obtained in practice. Clearly, we
have to resort to some approximate solution. It would be nice, however, to have guidelines
that indicate the necessary degree of accuracy that such approximate solution must have.
The same problem arises with the formulation (28). Indeed, expressing now uP as uP=∑
j Ujv

( j)
P we should now compute

N∑
j=1

UjL(v
( j)
P ; v(i)P )= (L

−1
B v( j)P ; L∗v(i)P )= (f; v(i)P )− (uf

B ; L
∗v(i)P ) ∀i=1; : : : ; N (32)

which again requires the (approximate) solution of the local problems de�ning L−1
B v(i)P for

each j, and uf
B . In these cases, having understood the stabilizing e�ect of the additional

term appearing in the sti�ness matrix of (32), that is −(L−1
B uP; L∗vP), the e�orts have been

concentrated mostly in providing approximate solutions of (25) that reproduced the same
stabilizing e�ect; see for instance References [14, 31–33]. In particular, when VP is made of
piecewise linear functions, we have that the stabilized problem corresponds exactly to the
SUPG method, with a speci�c value for the stabilizing parameter �. An approximate solution
will produce the same method with a di�erent value of �. One could then use the theory of
SUPG methods (see e.g. References [15, 34]) to get the proper conditions on �, and hence,
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backward, on the quality of the approximation. This, however, apart from working only in
particular cases, seems somehow unfair.
In the next section we are going to follow a di�erent approach. We suppose that in each

element �k we have a subgrid, and a �nite element space on this subgrid. The discretized
solutions of the local problems are then obtained by the standard Galerkin �nite element
approximation. We want to see if we can prescribe reasonable conditions on these �nite
element (subgrid) spaces, in order to preserve, in a sense to be made precise, the accuracy
that was (ideally) obtainable by solving (22). Unfortunately, we will not be able to do that for
a completely general problem, but we will have to consider a simpli�ed advection-dominated
case. We hope, however, that this might be a �rst step towards more general results.

4. THE CHOICE OF THE SUBGRID

As announced at the end of the last section, we are now going to consider a particular case
of (2). In this particular case, we shall introduce su�cient conditions on the subgrid in order
to preserve the quality of the a priori error bounds.
More precisely, we shall make the following assumptions on the bilinear form L:

L(u; v)= �Ls(u; v) +La(u; v) (33)

where Ls(u; v) is a bilinear symmetric form on V × V satisfying

|v|21;�6Ls(v; v)6Ms|v|21;� ∀v∈V (34)

representing the di�usive term, while La is a skew-symmetric bilinear form on V×V satisfying

La(u; v)6Ma‖u‖0;�|v|21;� ∀u; v∈V (35)

representing the convective term. Finally, � is a small parameter. We obviously assume that
some characteristic length of � (for instance its diameter) has been scaled to 1. It is not
di�cult to check that the present case is a particular case of (2), that can he obtained for
instance by making very mild assumptions on the coe�cients aij, taking d and all bi’s equal
to zero and assuming the convective term c=(cj) to have zero divergence in �.
Before discussing the choice of the subgrid, we �rst analyse the a priori error estimates

for problem (11). Following essentially [16], we set

eH := u− uH and �H := u− ui
H (36)

where ui
H is any approximation of u in VH . We immediately note that

eH − �H ∈VH (37)

so that by Galerkin orthogonality we have

L(eH ; eH − �H )=0 (38)
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Using now (34) and (33), then (38), then again (33) and (34), we have

�|eH |216L(eH ; eH )=L(eH ; �H )= �Ls(eH ; �H ) +La(eH ; �H )

6 �Ms|eH |1|�H |1 +La(eH ; �H ) (39)

The trick to estimate La(eH ; �H ) is now to consider a generic function �B in VB and recall
that VB is a subspace of VH , so that Galerkin orthogonality and (33) imply

0=L(eH ; �B)≡ �Ls(eH ; �B) +La(eH ; �B) (40)

Then we can use (35), (40), and (34) and write

La(eH ; �H ) =La(eH ; �H − �B) +La(eH ; �B)

6Ma|eH |1‖�H − �B‖0 − �Ls(eH ; �B)

6M�1=2|eH |1(�−1=2‖�H − �B‖0 + �1=2|�B|1) (41)

having also, in the last step, collected �1=2|eH |1, and set M := max{Ma; Ms}. De�ning now
‖�H‖� 1=2 := sup

�¿0
inf

�B∈VB
{�−1=2‖�H − �B‖0 + �1=2|�B|1} (42)

we immediately have from (41) and (42) that

La(eH ; �H )6M�1=2|eH |1‖�H‖� 1=2 (43)

that inserted in (39) gives the �nal estimate

�1=2|eH |16C(�1=2|�H |1 + ‖�H‖� 1=2) (44)

As discussed in Reference [16], and in the references therein, norm (42) behaves, from the
point of view of interpolation error, as a 1=2-norm (hence the name we adopted here). See
however [35] for a much more detailed analysis of these types of norms. Assuming that H
is a typical length associated with the size of the �k’s, and assuming that, for some integer
s¿1, we have the interpolation errors

|�H |r;�6CHs+1−r‖u‖s+1;� r=0; 1 (45)

we have then the usual error estimate (see e.g. References [15, 34])

�1=2|eH |1;�6C(�1=2Hs +Hs+1=2) (46)

We point out that, in general, the norm appearing in (45) will depend on �, unless, by shear
luck, the solution has a su�cient degree of smoothness independent of �. This implies that
the constant C appearing in (46) will also depend on �, unless the solution is smooth. This
however is the typical feature of this kind of estimates (see again, for instance, References
[15, 34] and the references therein), in which we play the game that the solution is smooth,
and we just want to see the degree of accuracy that one would obtain, in this case, with all
the other constants independent of �.
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We also notice that, with the same argument as in (41), we easily have, for every w∈V
and for every �B∈VB

La(eH ; �)=La(eH ; �− �B) +La(eH ; �B)6M�1=2|eH |1‖�‖� 1=2 (47)

that together with (46) produces a norm of the advective part of the error in the dual norm
of ‖ · ‖� 1=2. In practical cases, see always [16], this in turn produces the usual L2 estimate
for the advective part of the error, of the type

H 1=2‖c · ∇eH‖0;�6C(�1=2Hs +Hs+1=2) (48)

Our target is now to give su�cient conditions on the subgrid discretization in order to
preserve the error estimates (46) and (48). For this, we assume that we are given a �nite-
dimensional subspace Vh

H ⊂VH , and we consider the fully discretized problem

�nd uh∈Vh
H such that L(uh; vh)= (f; vh) ∀vh∈Vh

H (49)

We would like to have, for problem (49), a priori error estimates of type (46)–(48). For
this, we have to introduce suitable subspaces of Vh

H , as we did before for VH .
We set

Vh
B := Vh

H ∩VB (50)

Vh
L := {vhL∈Vh

H such that L(vhL; v
h
B)=0 ∀vhB∈Vh

B } (51)

and

Vh
S := {vh

S ∈Vh
H such that Ls(vh

S ; v
h
B)=0 ∀vhB∈Vh

B } (52)

To simplify the notation it will also be convenient to set

‖v‖2s := �Ls(v; v) �|v|21 (53)

We are now ready to introduce our assumptions on the space Vh
H . We explicitly point out,

form the very beginning, that our assumptions are only su�cient for getting suitable error
bounds. So far, they have been taylored for cases where the local dimension of 	H is small,
so that we can think to use spaces Vh

B that have a small dimension as well. We do believe that
there is room for many future improvements, and the present assumptions should be regarded
only as a beginning. Our �rst assumption will be

Assumption 1
There exists a constant C1, independent of H; h; and � such that, for every w∈V the solution
�h∈Vh

B of

L(�h; bh)=L(w; bh) ∀bh∈Vh
B (54)

satis�es

‖�h‖s +H−1=2‖�h‖06C1(‖w‖s +H 1=2‖w‖1 +H−1=2‖w‖0) (55)
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where, here and in all the sequel, H is some characteristic length associated with the �k’s
(as it was in (46) and (48)): to simplify the exposition, we can assume once and for all that
H is the maximum diameter of the �k’s.

Assumption 1 should be regarded in the following way: problem (54) corresponds to solve
a discrete problem, in each subdomain, exactly of the same type of the original one. For
all these problems we require stability estimates of the type that we expect for the global
problem (11) (see for instance the estimates (46) and (48)).
We shall come back in a while to discuss possible su�cient conditions that can ensure

(55). We �rst indicate the use that we are going to make of it.
For that we introduce a suitable interpolant of the exact solution u, that will allow an easier

derivation of error estimates. We start �rst by de�ning uh
i as the usual interpolant of u in Vh

H .
Then we de�ne a new interpolant, uh

I as follows

uh
I = uh

i on � and L(uh
I ; b

h)=L(u; bh) ∀bh∈Vh
B (56)

Assumption 1 allows us to compare the distance ‖u− uh
I ‖ with the corresponding ‖u− uh

i ‖.
Theorem 2
Let Assumption 1 hold, let u be a given function in V , and uh

i be a given function in Vh
H .

Assume �nally that uh
I is constructed as in (56). Then there exists a constants CI independent

of u; uh
i ; H; h, and � such that

‖u− uh
I ‖s +H−1=2‖u− uh

I ‖06CI(‖u− uh
i ‖s +H 1=2‖u− uh

i ‖1 +H−1=2‖u− uh
i ‖0) (57)

Proof
From (56) we have that uh

I must have the form uh
I = uh

i + �h, where �h∈Vh
B is determined by

L(uh
i + �h; bh)=L(u; bh) ∀bh∈Vh

B (58)

that is

L(�h; bh)=L(u− uh
i ; b

h) ∀bh∈Vh
B (59)

The proof follows then immediately from (55) using the triangle inequality.

Essentially, we are requiring that the new interpolant uh
I de�ned in (56) is as good as the

traditional interpolant uh
i .

We come back now to the problem of �nding su�cient conditions on the subgrid that can
ensure (55). A �rst possibility, rather crude but quite useful in simple cases (for instance
when the subgrid contains only one node per element, or just a few) is the following one:

∃C ′
1¿0 such that ‖bh‖06C ′

1H
1=2‖bh‖s ∀bh∈Vh

B (60)

In the simplest case where we have a poor subgrid, consisting of just one internal node in each
element �k , condition (60) is essentially equivalent to (55). Indeed, considering for simplicity
a case in which the coe�cients in (2) are constant, and w in (54) is linear, assuming that
the shape of the bubble bk is such that, in each �k

‖bk‖0;�k  |�k |−1=2
∫
�k

bk dx (61)
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we can write, in each �k ; �h=�bk and use (54) to determine �, obtaining

�=
Law

∫
�k

bk dx
‖bk‖2s

‖Law‖0;� ‖bk‖0
‖bk‖2s

(62)

that gives

‖�h‖0‖Law‖0;�k

‖bk‖20
‖bk‖2s

(63)

so that to get (55) we must have (60).
Inequality (60) should be compared with the usual Poincar
e inequality, that would give

‖bh‖06CH |bh|1 ∀bh∈Vh
B (64)

In d dimensions, for a ‘normally shaped’ bubble bh with maximum value equal to 1, we
expect ‖bh‖0 to behave like Hd=2 and |bh|1 to behave like Hd=2−1. Here we are dealing with
a two-dimensional problem; roughly speaking, in order to ful�l (60) we must have that, in
each macroelement �k ; |bh|1 behaves as �−1=2H 1=2, instead of being  1. Inequality (60) (that
actually would be the same in any dimension) requires therefore that the subgrid nodes are at
a distance  � (or smaller) from the boundary of the corresponding �k , as it is for instance
the case for the pseudo-residual-free bubbles of [31], or for Shishkin meshes [36]. We shall
see in a while that, if we have in mind subspaces Vh

B having more than a few degrees of
freedom, (60) is too restrictive. However its use is quite easy, and we prefer to start with it
rather than with more complicated variants. It is easy to see that (60) indeed implies (55),
when L has the structure described in (33) with (34) and (35). Actually, taking bh=�h in
(54), using (33), (34), and (35), and �nally using (60), we obtain

‖�h‖2s =L(�h; �h)=L(w; �h)

= �Ls(w; �h) +La(w; �h)

6Ms‖w‖s‖�h‖s +Ma‖w‖1‖�h‖0
6 ‖�h‖s(Ms‖w‖s +MaC ′

1H
1=2‖w‖1) (65)

which easily gives the required estimate for ‖�h‖s. To estimate ‖�h‖0 use again (60).
Another reasonably simple possibility would be to require that

∃�1¿0 such that ‖�h‖06�1H sup
bh ∈Vh

B

L(�h; bh)
‖bh‖0 ∀�h∈Vh

B (66)

together with

∃�2¿0 such that �‖bh‖16�2‖bh‖0 ∀bh∈Vh
B (67)

It is easy to see that (60) and (66) coincide when Vh
B has only one degree of freedom per

element. Indeed, in this case

H sup
bh ∈Vh

B

L(�h; bh)
‖bh‖0‖�h‖0 =H

L(�h; �h)
‖�h‖20

=H
‖�h‖2s
‖�h‖20

(68)
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On the other hand, also in the more general case, (66) and (67) always ensure (55). Indeed,
in the last step of (65), instead of ‖�h‖06C ′

1H
1=2‖�h‖s, we could use (59) in (66) to obtain

the following estimate:

‖�h‖06�1H sup
bh∈Vh

B

L(w; bh)
‖bh‖0 (69)

and then use (33)–(35), (53), and (67) to obtain, for every bh∈Vh
B

L(w; bh) =Ls(w; bh) +La(w; bh)6�Ms‖w‖1‖bh‖1 +Ma‖w‖1‖bh‖0
6max{Ms�2; Ma}‖w‖1‖bh‖0 (70)

Inserting it into (69) we have

‖�h‖06�1H max{Ms�2; Ma}‖w‖1 (71)

Then, using (71) in the last step of (65) gives

‖�h‖2s6Ms‖�h‖s‖w‖s +Ma�1H max{Ms�2; Ma}‖w‖21 (72)

that, together with (71), provides the desired bound (55).
We also point out that, unfortunately, (60) will not be satis�ed if the subgrid has one or

more internal nodes having distance of order H from all the other nodes. In this situation
we would indeed be able to construct a function bh in Vh

B with ‖bh‖0H and ‖bh‖s  �1=2,
making (60) impossible to satisfy with C ′

1 independent of �.
Our second assumption will be needed in order to prove error bounds for ‖u − uh‖. In

order to present it, we shall need however one further piece of notation. To every vh∈V h
H

we associate in a unique way two other elements of Vh
H , that we call v

h
L(v

h) and vh
S(v

h) (or,
shortly, just vh

L and vh
S , respectively) by the conditions

vh
L(v

h)= vh
S(v

h)= vh on � and vh
L(v

h)∈V h
L ; vh

S(v
h)∈V h

S (73)

where Vh
L and Vh

S are de�ned in (51) and (52), respectively.

Assumption 2

∃C2¿0 such that ∀vh∈Vh
H we have ‖Lavh

S(v
h)‖06C2H−1=2‖vhL(vh)‖s (74)

where clearly La is the (advective) operator associated with the bilinear form La in (33).

At �rst sight, Assumption 2 might seem rather obscure. A possible way of looking at it is
the following: we are comparing the local discrete solutions of two di�erent problems, with
the same boundary data. Indeed, vh

S and vhL have the same value on the boundary of each �k ,
and represent the discrete solutions, on the given subgrid, of Lsv=0 and Lv=0, respectively,
where clearly Ls, in agreement with (33), denotes the symmetric part of the operator L. In
both sides of (74) we have terms including �rst derivatives, but on the right-hand side we
have a term that behaves like H−1=2�1=2, that is much smaller than 1 in the interesting cases.
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Assumption 2 requires that the subgrid is such that the discrete solution of the bad problem
(Lv=0) comes out to be bad enough so that its ‖ · ‖1 norm is big enough to compensate for
the smallness of H−1=2�1=2. However, a su�cient condition for (74) to hold is to have

‖Lavh
S‖6C3H−1=2 sup

bh∈Vh
B

La(vhL; b
h)

‖bh‖s ∀vh∈Vh
H (75)

for some positive constant C3, where vh
S and vhL are de�ned, starting from vh, as in (73).

Indeed, owing to the properties of functions vhL we have, for all b
h∈Vh

B ,

La(vhL; b
h)=−�Ls(vhL; b

h)6Ms‖vhL‖s‖bh‖s (76)

Hence (75) implies (74) with C2 =C3Ms. We note that, surprisingly enough, a small value
of � is actually helping in proving (75) for a given choice of subgrid spaces. Indeed, a
small � will, in general, make the norm ‖bh‖s smaller (see (53)) in the denominator of (75),
without changing ‖Lavh

S‖0 (that does not depend on �). In practical cases, the numerator of
(75), having �xed bh and vh (that is, the values of vhL on �), also increases when � becomes
smaller. Indeed, we remind that, for a �xed vh, the value of vhL(v

h), as de�ned in (73), grows
when � becomes smaller. It seems therefore that, in this approach, the care to be taken for
a small � is all in Assumption 1. On the other hand, for instance in the case of one bubble
per element, it might happen that the shape of the bubbles bk is such that ‖bk‖s, instead of
behaving like H 1=2 (or as Hd=2−1=2 in d dimensions) as required by (60), is actually bigger.
This would correspond, for instance, to having a node whose distance from @�k is smaller
than �. Then (74) might be violated, as the denominator in (75) becomes too big. The use of
(60) and (74) together seems then to require that the internal node is exactly at a distance of
order � from the boundary. This agrees perfectly with the results obtained in Reference [11]
in a more particular case.

Remark
One might wonder why we took the pain to introduce vh

S , and use it in the left-hand side
of (74). The reason is simple. If we took vh

L instead of vh
S in the left-hand side of (74) we

would have obtained a very powerful assumption that is never satis�ed, even in the simplest
examples (one dimension, constant coe�cients, etc.).

We are now ready to obtain error estimates for problem (49).

Theorem 3
In the same assumptions of Theorem 2, let u and uh be the solutions of (5) and (49),
respectively, and let uh

i be given in Vh
H . Let moreover uh

I be de�ned as in (56). Then there
exists a constant �s, independent of u; uh; uh

i ; H; h, and � such that

‖u− uh‖s6�s(‖u− uh
I ‖s +H−1=2‖u− uh

I ‖0) (77)

Proof
We set eh := uh − uh

I and �h := u − uh
I . We notice that e

h − �h= uh − u, so that, by Galerkin
orthogonality,

L(eh − �h; vh)=0 ∀vh∈Vh
H (78)
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Moreover, for all bh∈Vh
B we have, using (49), (56) and (5)

L(eh; bh)=L(uh; bh)−L(uh
I ; b

h)= (f; bh)−L(u; bh)=0 (79)

implying

eh∈Vh
L (and hence ehL ≡ eh) (80)

that will be used later on. We can now use (53), (78), and (33) to obtain

‖eh‖2s =L(eh; eh)=L(�h; eh)= �Ls(�h; eh) +La(�h; eh)≡ I + II (81)

The bound for I is immediate

I= �Ls(�h; eh)6Ms‖�h‖s‖eh‖s (82)

To bound II requires some additional work: �rst we introduce ehS as in (73). We notice
immediately that ehS turns out to be the projection of eh onto Vh

S in the ‖ · ‖s-norm. Indeed
for all vh

S ∈Vh
S we have

Ls(eh − ehS ; v
h
S)=0 (83)

since eh − ehS belongs to Vh
B and Ls is symmetric. We deduce that, in particular,

‖ehS‖2s + ‖eh − ehS‖2s = ‖eh‖2s (84)

To estimate II we add and subtract ehS

II=La(�h; eh)=La(�h; ehS) +La(�h; eh − ehS)≡ III + IV (85)

and we bound the two pieces separately. Using Cauchy–Schwarz, (74), and �nally (80) we
obtain

III=La(�h; ehS)6‖�h‖0‖LaehS‖06‖�h‖0C2H−1=2‖ehL‖s= ‖�h‖0C2H−1=2‖eh‖s (86)

In order to bound IV we �rst notice that, thanks to (73) eh − ehS belongs to Vh
B . Using (56)

we have then

La(�h; eh − ehS) +Ls(�h; eh − ehS)=L(�h; eh − ehS)=L(u− uh
I ; e

h − ehS)=0 (87)

Now using (87), (34), and (84) we have

IV=La(�h; eh − ehS)6Ms‖�h‖s‖eh − ehS‖s6Ms‖�h‖s‖eh‖s (88)

Collecting (81), (82), (85), (86), and (88) we have

‖eh‖2s6‖eh‖s(2Ms‖�h‖s + C2H−1=2‖�h‖0) (89)

and we conclude the proof using the triangle inequality.

From (74), (80), and (89) we immediately have an estimate on the convective part of the
error

H 1=2‖LaehS‖6C2‖ehL‖s=C2‖eh‖s6max{2C2Ms; C22}(‖�h‖s +H−1=2‖�h‖0) (90)
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Comparing (77) and (90) with the previous results for the corresponding errors for u− uH

(see e.g. (46) and (48)), we see that our assumptions insure errors of the same size.

5. CONCLUSIONS

We have seen a rather general setting that includes many variants of two-level methods that
have been developed, more or less independently from each other, for various applications.
Many stabilized methods can also be included in this setting. We have seen as well that,
for certain problems like convection-dominated �ows, the required stabilizing e�ect can be
obtained just with a suitable choice of the subgrid. In particular, we proposed su�cient con-
ditions on the subgrid discretization in order to obtain error estimates of the same quality as
one could obtain by solving (ideally) the �ne-level equations in an exact way.
The use of conditions of this type in self-adaptive procedures is surely worth investigating,

as well as their extension to non-conforming approximations for the subgrid problems, or to
other applications.
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